《接地的概念》

下载本书

添加书签

接地的概念- 第2部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
阻抗值随表面接触面积、温度、呼吸等显著变化;50~100V 时,皮肤阻抗降低很多;频率增高时,皮肤阻抗也随之降低;皮肤破损时,皮肤阻抗可忽略不计。
  ③人体总阻抗 ZT ZT由电阻分量及电容分量组成。当接触电压在 500V 及以下时,ZT值主要决定于皮肤阻抗值;接触电压越高,ZT与皮肤阻抗关系越少;当皮肤破损后,ZT值接近于人体内阻抗。
  ④人体初始电阻 Ri 在接触电压出现的瞬间,人体的电容还未充电,皮肤阻抗可忽略不计,这时的电阻值称为人体初始电阻。该值限制短时脉冲电流峰值。当电流路径从手到手或手到脚而且接触面积较大时,5% 分布秩(即 5% 的人所呈现的最小初始电阻值)Z5% 可认为等于 500Ω。

图4 人体阻抗的组成  

  (2)人体阻抗与接触状况的关系 通常划分为以下三类:
  ① 状况 1 干燥或湿润的区域、干燥的皮肤、高电阻的地面,此时人体阻抗值:

                  Z1=1000 + 0。5Z5% (Ω)

式中:1000──鞋袜和地面两者电阻的随机值,Ω
    0。5──考虑了双手至双脚的双重接触情况
    Z5%──5% 分布秩,即 5% 的人呈现此最小阻抗值,Ω
  ② 状况 2 潮湿的区域、潮湿的皮肤、低电阻的地面,此时人体阻抗值:

                  Z2 = 200 = 200 +0。55% (Ω)

式中;200──较低的地面电阻值,不计鞋袜的电阻,Ω
  ③ 状况 3 浸入水中的情况,此时皮肤电阻、环境介质的电阻可忽略不计。
  在各种状况下的安全电压值,各国规定不尽相同,如表 1所示。



  表1 为交流电流的安全电压,IEC 规定直流(无纹波)的安全电压为:在状况 1,不大于 120V;在状况 2,不大于 60V。安全电压包括接地系统的相对地或极对地电压,或不接地和非有效接地的相间及极间电压。

  2.电击效应 

  (1)交流电流的电击效应 IEC 经过多年的试验研究,认为心室纤维性颤动是电击致死的主要原因。一个心动周期如图 5所示,由产生兴奋期 P、兴奋扩展期 R 和兴奋复原期T所组成。图5中的数字表示兴奋传播的顺序。在兴奋复原期内有一个相对较小的部份称为易损期,在易损期内,心肌纤维处于兴奋的不均匀状态,如果受到足够幅度电流的刺激,心室纤维发生颤动,如图 6中 X 点受电流刺激.对心电图和血压的影响,如图 6中曲线所示。此时发生心室纤维性颤动和血压降低,如电流足够大将导致死亡。
  当电流流过人体时,人身所察觉到的最小电流值称为感觉阈值。对于 15 ~100Hz 交流电流,此值为 0。5mA。人握电极能摆脱的电流最大值称为摆脱电流,对于 15~100Hz 交流电流为 10mA。当流过人体的电流继续增加时,人体电流 IB和电流流过的持续时间 t 的关系如图 7所示。图7是按电流流过人体的路径从左手到双脚的效应绘制的。当电流为 500mA、时间为 100ms 时,产生心室纤维性颤动的几率为 14%。图 7中的 Ⅰ 区通常无反应性效应;Ⅱ 区通常无有害的生理效应;Ⅲ 区通常无器官性损伤,但可能出现肌肉收缩和呼吸困难.在心脏中形成兴奋波和传导的可逆性紊乱,包括心房纤维性颤动及短暂心脏停跳;在 Ⅳ区内.开始出现心室纤维性颤动,到曲线 c1,几率为 5%;到曲线 c2,几率为 50%;曲线 c3 以外则几率超过 50%。随着电流与时间的增加,可能发生心脏停跳、呼吸停止及严重烧伤。
     图 7中的电流为“从左手到双脚”路径的电流,如为其它路径,按下式计算:

                  IB = Iref/F         (2)

式中:IB ──流经其它路径的人体电流,mA
   Iref──流经“从左手到双脚”的人体电流,mA
   F ──心电流系数,见表 2

  上述的感觉阈值、摆脱阈值及图 7中的心室纤维性颤动阈值都是对 15~100Hz 交流电流而言的。
  在工业企业和民用建筑中,有不少电气设备的使用频率超过 100Hz,例如有些电动工具和电焊机,可用到 450Hz;电疗设备大多数使用 4000~5000Hz;开关方式供电的设备则为 20kHz ~ 1MHz;微波及无线电设备还有使用更高的频率的。对于这些 100Hz 以上交流电流,人体皮肤的阻抗,在数十伏数量级的接触电压下,大致与频率成反比,例如 500Hz 时皮肤阻抗,仅约为 50Hz 时皮肤阻抗的 1/10,在很多情况下,皮肤的阻抗可以忽略不计。但因为是高频电流,对人体的感觉和对心脏的影响都比 100Hz 以下交流电小。为了与 50Hz 时阈值相比,常采用频率系数 Ff 来衡量、频率系数 Ff 为频率f时产生相应生理效应的阈值电流与  50Hz 的阈值电流之比。在频率为 100Hz 以上直至 1000Hz 时,感觉阈值的频率系数和摆脱阈值的频率系数见图 8;电击持续时间长于心动周期并以纵向电流流经人体躯干时,心室纤维性颤动阈值的频率系数见图 9。电击持续时间小于心动周期时,尚无试验数据。频率在 1000Hz 以上直到 10000Hz 交流电的感觉阈值的频率系数和摆脱阈值的频率系数见图 10;心室纤维性颤动阈值的频率系数,IEC 还在考虑中。频率在 10kHz 及 100Hz 之间时,阈值大致由 10mA 上升到 100mA(有效值),频率在 100kHz 以上及电流强度在数百毫安数量级时,较低频率时有针刺的感觉,频率再高则有温暖的感觉。频率在 100kHz 以上时,既没有摆脱阈值和心室纤维性颤动阈值的试验数据.也没有这方面的事故报告。频率在 100kHz 以上及电流在安培数量级时,可能出现烧伤,烧伤的严重程度随电流流通的持续时间而定。



  (2)直流电流的电击效应 电流对人体的效应,例如刺激神经和肌肉,引起心房或心室纤维性颤动等,与电流大小的变化有关,特别是在接通或断开电流的时候。电流幅度不变的直流电流要产生同样的效应,要比交流电流大得多。握持直流电器,事故时较易摆脱;当电击持续时间长于心动周期时,心室纤维性颤动阈值比交流的阈值高得多。直流电流从手到双脚,通过人体躯干的电流称为纵向电流;从手到手通过人体躯干的电流称为横向电流;以双脚为正极,流过人体的电流为向上电流;以双脚为负极,流经人体的电流为向下电流。直流电流与具有相同诱发心室纤维性颤动几率的等效交流电流(有效值)之比称为直流/交流等效系数。
     直流电流的持续时间和电流幅值的关系见图 11。图中Ⅰ区通常无反应性效应;Ⅱ 区通常无有害的生理效应;Ⅲ区通常预期无器官损伤,随电流幅值和时间而增加其严重程度,可能出现心脏中兴奋波的形成和传导的可逆性紊乱;Ⅳ 区可能出现心室纤维性颤动,随电流幅值和时间增加,除 Ⅲ区的效应外,预计会发生严重烧伤等病理生理效应。关于心室纤维性颤动,该图所示为电流从左手到双脚,且为向上电流的效应。如为向下电流,应将电流乘以 2 的系数进行换算。当电流从手到手,不大可能产生心室纤维性颤动。在该图中,当电流流过的持续时间小于 500ms 时,尚无 Ⅱ 和 Ⅲ 区分界线的资料。
     直流电流的感觉阈值取决于接触面积、接触状态(干湿度、压力、温度)、电流流过的持续时间和各自的生理特征等,与交流电不同的是:当电流以感觉阈值强度流过人体时,只是在接通和断开电流时有感觉,其它时间没有感觉。在与测定交流电流感觉阈值相等条件下,直流电流的感觉阈值约为 2mA。
  直流的摆脱阈值与交流不同,约 300mA 以下的直流电流没有可以确定的摆脱阈值,只有在接通和断开电流时,才能引起疼痛性和痉挛似的肌肉收缩。当电流大干 300mA 时,可能摆脱不了,或仅在电击持续时间达几秒或几分种后才有可能摆脱不了。
  通过人体的电流约为 30mA 时,人体四肢有暖热感觉。流经人体的电流为 300mA 及以下横向电流持续几分钟时,随着时间和电流增加,可能产生可逆性的心节律障碍。电流伤痕、烧伤、眩晕、有时失去知觉,超过 300mA 时,经常出现失去知觉的情况。
  (3)特殊波形电流的电击效应  (3)特殊波形电流的电击效应 特殊波形电流在工业企业和民用建筑所用的电气设备中,有以下几种,对于人体的电击效应分别说明如下:
     ① 具有直流分量的交流电流的效应 标准交流和直流的图形如图 12(a)及(b)所示、具有直流分量的交流电流的波形如图 12(c)所示,常用的半波整流及全波整流的波形如图 13(a)及(b)所示。

 

     经过整流后,如图 13中所示的波形交流电的感觉阈值和摆脱阈值取决于人体与电极的接触面积,接触状态(干湿度、压力、温度)和各自的生理特征,其阈值尚在 IEC 的考虑中。
     在讨论心室纤维性颤动阈值时,必须区别下列的电流量值:Irms 为合成波形电流的有效值;Ip 为合成波形电流的峰值;Ipp 为合成波形电流的峰间值;Iev 为产生与所涉及波形在心室纤维性颤动方向有相同危险的正弦电流的有效值,该值用来代替图 7及图 11中的人体电流 IB 以估计心室纤维性颤动的危险。
     当电击持续时间大于 1。5 倍心动周期时,

                            Iev = Ipp/√2

     当电击持续时间小于 0。75 倍心动周期时,

                            Iev = Ip/√2

     当交流对直流比越小,上述关系越不能适用。对于持续时间小于 0。1s 的直流电击,其阈值等于图 11中相应的电流值。
  当电击持续时间在 0。75 倍到 1。5 倍心动周期时,量值参数由峰值转变为峰间值,转变的过程 IEC 认为尚需进一步研究。
  如图 13 所示的半波及全波整流的波形,由于电流峰值等于其峰间值,当电击持续时间大干 1。5 倍心动周期及小于 0。75 倍心动周期时,Iev 分别为 Ipp/(2√2)= Ip/(2√2) 及 Ipp/√2 = Ip/√2 。由图 13可见,半波整流时 Irms = Ip/2,全波整流时为 Ip/√2。因此可得半波整流时 Iev值分别为 Irms/√2 及 √2Irms;全波整流时,Iev 值分别为 Irms/2 及 Irms 。
  ② 具有相位控制的交流电流的效应 一般的具有相应控制的交流电流的波形分为对称控制和不对称控制两种,分别示于图 14 的(a)和(b)。



  这种波形的电流在产生感觉和阻止摆脱方面的效应大致上与具有相同 Ip 的纯交流电流相同。相位控制角在 120° 以上时,峰值随着电流流通持续时间的减少而增加。
  对于对称控制:当电击持续时间大于 1。5 倍心动周期时。Iev 为具有与所涉及的相应波形电流相同的有效值;当电击持续时间小于 0。75 倍心动周期时,Iev 为具有与所涉及的相应波形电流相同峰值电流的有效值,如相位控制角在 120°以上,心室纤维性颤动阈值将升高;当电击时间在 0。75 倍到 1。5 倍心动周期时,Iev 由峰值转变为有效值,转变的过程,IEC 认为尚待进一步研究。
  对于不对称控制,其所产生的电流,也可能有直流分量。当电击持续时间大干 1。5 倍心动周期时,IEC 尚在考虑中;电击持续时间小于 0。75 倍心动周期时,Iev 为具有与所涉及的相应波形电流相同峰值电流的有效值。相位控制角在 120° 以上时,心室纤维性颤动阈值将升高。
  ③具有多周期控制的交流电流的效应 具有多周期控制的交流电流的波形见图 15所示。ts 为传导时间。tp 为不传导时问,ts+tp 为工作周期。p = ts/(ts+tp)为电力控制程度。I1rms 为电流传导期间电流的有效值,即Ip/√2;I2rms为工作周期内电流有效值,即 I1rms√p 。
  感觉阈值及摆脱阈值,IEC 尚在考虑中。
  心室纤维性颤动阈值,IEC 在幼猪身上进行试验,试验结果如图 16所示,对于人体,可作参考。当电击持续时间大于 1。5 倍心动周期时,阈值取决于 p 。p接近 1 时,Iev为与同一持续时间的正弦交流电流相同的有效值。p接近于 0。1 时 I1rms 与持续时间短于 0。75 倍心动周期的交流电流的阈值相同。 当 p在 1~0。1 的中间值时,如图 16所示,流过人体的电流逐渐增大,致使纤维 I1rms 与同一持续时间的正弦交流电流的有效值相同。



  ④ 短持续时间单向
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架