《世界古代中期科技史》

下载本书

添加书签

世界古代中期科技史- 第22部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!

    倍。怎样得到两倍于原立方体体积的新立方体,自然会成为人们很想知 

     道的问题。显然, 



                                                              3 

     如果原立方体的棱长为a,那么新立方体的棱长应为 2a,这样 

     新立方体的体积才是原立方体体积的两倍。但是,在只限于用没有刻度 

     的直尺和圆规的情况下,是没有办法作出这一立方体的,这是名符其实 

     的一个难题。 

          第二个难题的产生与第一个难题有类似的情况,当时人们已能对任 

     意角二等分,自然要进一步想知道怎样才能三等分任意角。对此,智者 



① 参阅梁宗巨《世界数学史简编》,第105 页。 

① 参阅克莱因《古今数学思想》第一册,上海科学技术出版社1979 年版。 


… Page 74…

学派的主要代表人物喜庇亚斯创设了一种“割圆曲线”,试图解决三等 

分任意角问题。他的思路大致如下:在矩形ABCD中,  BC边匀速地平行 

下降与AD边重合;同时,  AB边匀速地绕A沿顺时针方向旋转,与AD 

边重合。如图6。8那么,下降的BC边与旋转的AB边交点的轨迹就是割 

圆曲线。这条曲线上每一个点的纵坐标与相应的夹角成正比, 

    y     
… Page 75…

    学的严谨性,在他的学园教学中坚持准确的定义和演绎的证明。毕达哥 

    拉斯学派对点的定义是:点是有位置的单位,柏拉图认为毕达哥拉斯学 

    派对点的定义不够明确,而另立定义:点是直线的开端。柏拉图关心推 

    理过程的方法论,有两类推理方法被认为是他的学派的贡献。第一类是 

    分析方法,用这种方法时,先假定要证明的结果是对的,然后由此推出 

    一些结论,直至推出已知的真理或与已知真理相矛盾的结论。如果由待 

    证命题推出已知真理,那么只要把推理的步骤倒过来,就可以做出证明; 

    如果由待证命题推出与已知真理相矛盾的结果,就证明待证命题是错 

    的。第二类是归谬法,用这种方法时,也是先假定要证明的结果是对的, 

    只不过由此能够得出与要证明的结果相矛盾的结论,这就证明待证结果 

    是谬误的。柏拉图认为数学采用分析推理方法是十分自然的事,他说: 

     “研究几何和算术之类学问的人,首先要在这一学科里认定奇数和偶 

    数、各类图形、三类角以及诸如此类的东西,把它们当成大家都承认的 

    公设,认为不必再为自己和别人作出什么说明,谁都明白。然后他们由 

                                                                            ① 

    此出发,通过一系列的逻辑推论,最后达到他们所要证明的结论。”至 

    少可以说,柏拉图学派使数学,特别是几何学具有了明确的思维方式。 

    从这个意义上说,柏拉图学派为古希腊最负盛名的欧几里德几何学奠定 

    了基础。 

         柏拉图学派的欧多克斯是成果颇丰的数学家,他的一个重要贡献是 

    建立一个纯粹几何性的比例理论。欧多克斯引入“量”的概念,用来表 

    示可以连续变化的线段、角、面积、体积等。量与数是不同的,数是跳 

    跃的,如从1到2到3等等;而量则是连续变化的,欧多克斯引入的量 

    是不指定数值的。然后,他定义了两个量的比,相等的比彼此是成比例 

    关系的,这样,就把可公度比与不可公度比都包括在内了。欧多克斯对 

    线段的长度、角的大小以及其它的量和量之比,都不给出数值,就是为 

    了避免出现无理数 (不可公度比)。这对几何学的发展起到了积极的推 

    动作用,例如泰勒斯提出的相似三角形的对应边成比例的命题,就是在 

    欧多克斯的比例理论建立以后才被证明的。但是,欧多克斯的比例理论 

    实际上是硬性将数与几何分开,虽然是通过建立比例理论使几何学能够 

    处理不可公度问题了,却避开了代数和无理数,从而造成希腊人在运算 

    能力上的不足,与几何学的高度发展形成鲜明的对照。 

         欧多克斯的另一重要贡献是对穷竭法的发展。穷竭法通常是以欧多 

    克斯命名的,因为后人认为欧多克斯尽管不是提出穷竭法思想的第一 

    人,但穷竭法确是在他那里得到补充、完善、发展和推广的。欧几里德 

     《几何原本》第十篇的第一个命题就是作为穷竭法基础的重要引理,这 

    个引理的意思是:如果从任何量中减去一个不小于它的一半的部分,再 

    从余下的部分中减去不小于这个余量一半的部分,等等,到最后将留下 

    一个小于任何给定的同类量的部分。这个引理被认为是欧多克斯曾经证 

    明而由欧几里德在《几何原本》中表述出来的。在此基础上,欧多克斯 

    用穷竭法证明了两圆面积之比等于其半径平方之比,两球体积之比等于 

    其半径立方之比,棱锥体积是同底同高棱柱体积的1/3,圆锥体积是同底 

    同高圆柱体积的1/3等。 



① 柏拉图:《国家》,引自《西方哲学原著选读》上卷,第92 页。 


… Page 76…

          (6)欧几里得与 《几何原本》 

         欧几里得(约公元前330~前275)是亚历山大前期的第一个大数学 

    家。亚历山大前期是指从公元前4世纪到公元前146年古希腊灭亡,罗 

    马成为地中海区域的统治者为止,这一时期,希腊数学发展达到了鼎盛 

    时期。欧几里得生于雅典,曾就学于柏拉图学派。大约在公元前300年 

    左右,在托勒密一世王的邀请下,欧几里得来到亚历山大城传授数学。 

    在此,欧几里得完成了他的代表作,也是希腊数学的百科全书—— 《几 

    何原本》。古希腊几何学从泰勒斯开始,经毕达哥拉斯学派到柏拉图学 

    派,发展为建立在定义和公理基础上演绎而成的一套严密体系。欧几里 

    得的 《几何原本》是集大成之作,充分地体现了古希腊几何学的发展结 

    果,成为标志古代希腊几何学形成完整体系的里程碑。欧几里得不仅在 

    选择公理和编排定理次序上下了一番功夫,而且他还增补了一些定理, 

    给出了一些证明;特别是体系的严谨与论证的严密更使后人赞叹不已。 

     《几何原本》的论述结构是以少量原始概念和不需证明的几何学命题作 

    为定义、公理与公设,由此出发通过逻辑推理证明一系列的几何定理, 

    形成一个由简至繁的体系。这种公理化方法,至今仍是构造科学理论体 

    系的重要方法。 

          《几何原本》的内容共计有13篇,有的版本列出15篇,其中第14 

    篇和第15篇非欧几里德所作,而是后人补上去的。 

         第1篇首先给出了23个定义,涉及到点、线、面、圆和平行线等一 

                                                    ① 

    批原始概念;然后提出了5个公设和5个公理 : 

         公设  1。从任一点到任一点作直线 (是可能的)。 

  2。把有限直线不断循直线延长 (是可能的)。 

  3。以任一点为中心和任一距离(为半径)作一圆(是可能的)。 

  4。所有直角彼此相等。 

  5。若一直线与两直线相交,且若同侧所交两内角之和小于两直角,则两直 

    线无限延长后必相交于该侧的一点。 

         公理1。跟同一件东西相等的一些东西,它们彼此也是相等的。 

               2。等量加等量,总量仍相等。 

               3。等量减等量,余量仍相等。 

              4。彼此重合的东西是相等的。 

               5。整体大于部分。 

    欧几里得同意亚里士多德的观点,即认为公理是适用于一切科学的真 

    理,而公设则只适用于几何学。其中第5公设是欧几里得的杰作,他可 

    能认为为了避免出现无限远空间的问题,这一公设是必要的。但是,这 

    个公设由于不如前4个公设那么一望而知,人们不容易一下子接受,甚 

    至有人认为欧几里得之所以把它作为公设,是因为他无法证明它。这成 

    为《几何原本》的一个“污点”,为洗刷这一污点,在欧几里得提出这 

    一公设之后,不断引起人们用其它公理和公设予以证明的努力以及对它 

    的种种怀疑。在此后的两千年间,对它证明的努力终于失败,而对它的 

    怀疑则产生了非欧几何。1826年,俄罗斯数学家罗巴契夫斯基 (1792~ 



① 克莱因:《古今数学思想》第一册,第69 页。 


… Page 77…

     1856)宣读了他的关于非欧几何的论文《简要叙述平行线定理的一个严 

    格证明》,这标志着几何学的新革命。非欧几何的发展不仅为相对论的 

    产生准备了条件,更为重要的是它所引入的新思想,从根本上更新了古 

    老的几何观念。这一结果是欧几里得无法预料的。 

         第1编在公设和公理之后,还给出了48个命题。这48个命题的内 

    容可以分为3类,第一类是从命题1到命题26,主要讨论了三角形和垂 

    直(垂线)问题,包括三角形的三个全等定理;第二类是从命题27到命 

    题32,主要讨论了平行线问题,并证明了三角形的三个内角之和等于两 

    个直角;第三类是从命题33到命题48,主要讨论了平行边四形、三角形 

    和正方形,特别注意面积问题,最后的两个命题分别证明了毕达哥拉斯 

                                                                         ① 

    定理及其逆定理。关于毕达哥拉斯定理的证明是通过面积做出的 ,如图 

    6。10,先证出△ABD△FBC,矩形BL=2△ABD,正方形GB=2△FBC,于 

    是得到:矩形BL=正方形GB,同样有矩形CL=正方形AK。所以,正方 

                                           2    2     2 

    形BE=正方形GB+正方形AK,即BC=AB+AC。 



                            图6。10毕达哥拉斯定理的证明 

         第2篇有14个命题,主要讨论了面积的变换和几何代数法,特别是 

    几何代数法,反映了希腊数学发展的特点。从毕达哥拉斯学派开始,希 

    腊人不承认存在无理数,所以他们用线段来代替数,处理长度、角度、 

    面积和体积。这样,两数的乘积为两边长等于两数的矩形的面积;三数 

     的乘积为棱长、宽和高分别等于三数的长方体体积;两数相加减则用把 

    一线段延长或对一线段截割来表示;两数相除则为两线段之比。 

         第3篇有37个命题,这些命题全部与圆有关。它首先给出了与圆有 

    关的一些定义,然后讨论了弦、切线、割线、圆心角及圆周角等问题。 

         第4篇有16个命题,主要讨论了圆内接和圆外切图形。在圆内接正 

    多边形中,除了正方形、正五边形和正六边形之外,最后的命题还指出 

     了正十五边形的建立。据说,圆内接正十五边形产生于天文学。 

         第5篇先给出了18个定义,涉及几个量之比的相互关系;然后用25 

    个定理证明了比例的一些基本性质。这一篇被认为是对欧多克斯的比例 

    理论的阐述。 

         第6篇有33个命题,主要是利用第5篇的比例理论讨论了相似形问 

    题。 

         第7篇至第9篇共有102个命题,主要讨论了数论,即整数和整数 

    之比的性质问题。《几何原本》中只有这3篇讨论了算术问题,不过, 

    关于比例的定义和定理,有很多是重复了第5篇的内容。那么为什么欧 

    几里德仍然要把数论列为独立的篇章呢?有两种看法,推测了欧几里得 

              ① 

     的出发点 :一种看法认为欧几里得认为在他前几篇中所用的量的概念中 

    并不包括
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架