《考博生化和分子生物学复习笔记》

下载本书

添加书签

考博生化和分子生物学复习笔记- 第15部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
生酮氨基酸和生糖氨基酸的界限并不是非常严格的:因为有些氨基酸如Ile Met Val也可分解形成乙酰…CoA,故也可生成酮体。
氨基酸合成类型:
三羧酸循环:α…酮戊二酸(谷氨酸族)、草酰乙酸(天冬氨酸族);
糖酵解:3…磷酸甘油酸(丝氨酸族)、丙酮酸(丙氨酸族)、磷酸烯醇式丙酮酸+4…磷酸赤藓糖(芳香族氨基酸);
戊糖磷酸途径:5…磷酸核糖(组氨酸);
氨基酸合成调节:产物抑制(举例说明)、酶合成的调节
重要氨基酸衍生物:
NO(氧化氮):由精氨酸在氧化氮合酶催化形成,同时生成瓜氨酸;
肌酸:由甘氨酸、精氨酸、甲硫氨酸合成;
卟啉:由甘氨酸、琥珀酰…CoA合成;
细胞内信息物质: 存在于细胞内,能够传递特定调控信号的化学物质称为细胞内信息物质。 
1.第二信使:在细胞内传递信息的小分子化学物质称为第二信使。① 环核苷酸类:如cAMP和cGMP;② 脂类衍生物:如甘油二脂(DAG),1;4;5…三磷酸肌醇(IP3),花生四烯酸等。③ 无机物:如Ca2+、NO等。 
2.信号蛋白:细胞膜上或细胞内能够传递特定信号的蛋白质分子,常与其他蛋白质或酶构成复合体以传递信息。如G蛋白、连接蛋白(SOS,GRB2)、鸟苷酸交换蛋白(GEF)、GTPase激活蛋白(GAP)等。 
3.信号酶:细胞内能够传递特定调控信号的酶蛋白分子。如胰岛素受体底物…1/2(IRS1/2)、 MAPKKK(Raf…1)、MAPKK(MEK…1/2)、MAPK(ERK1/2)、PKA、PKB、PKC、PKG、PAK、PDK、CaMPK等。 
三、受体的分类、结构与功能: 
受体(receptor)是指存在于靶细胞膜上或细胞内的一类特殊蛋白质分子,它们能识别特异性的配体并与之结合,产生各种生理效应。 
1.根据受体的亚细胞定位分类: 
⑴细胞膜受体:这类受体是细胞膜上的结构成分,一般是糖蛋白、脂蛋白或糖脂蛋白。多肽及蛋白质类激素、儿茶酚胺类激素、前列腺素以及细胞因子通过这类受体进行跨膜信号传递。 
⑵细胞内受体:这类受体位于细胞液或细胞核内,通常为单纯蛋白质。此型受体主要包括类固醇激素受体,维生素D3受体(VDR)以及甲状腺激素受体(TR)。 
2.根据受体的分子结构分类: 
⑴配体门控离子通道型受体:此型受体本身就是位于细胞膜上的离子通道。其共同结构特点是由均一性的或非均一性的亚基构成一寡聚体,而每个亚基则含有4~6个跨膜区。此型受体包括烟碱样乙酰胆碱受体(N…AchR)、A型γ…氨基丁酸受体(GABAAR)、谷氨酸受体等。 
⑵G蛋白偶联型受体:此型受体通常由单一的多肽链或均一的亚基组成,其肽链可分为细胞外区、跨膜区、细胞内区三个区。在第五及第六跨膜α螺旋结构之间的细胞内环部分(第三内环区),是与G蛋白偶联的区域。大多数常见的神经递质受体和激素受体是属于G蛋白偶联型受体。 
G蛋白是由α、β、γ亚基组成的三聚体,存在于细胞膜上,其α亚基具有GTPase活性。当配体与受体结合后,受体的构象发生变化,与α亚基的C…端相互作用, G蛋白被激活,此时,α亚基与β、γ亚基分离,可分别与效应蛋白(酶)发生作用。此后,α亚基的GTPase将GTP水解为GDP,α亚基重新与β、γ亚基结合而失活。 
⑶单跨膜α螺旋型受体:此型受体只有一段α螺旋跨膜,受体本身具有酪氨酸蛋白激酶活性;或当受体与配体结合后,再与具有酪氨酸蛋白激酶活性的酶分子相结合,进一步催化效应酶或蛋白质的酪氨酸残基磷酸化,也可以发生自身蛋白酪氨酸残基的磷酸化,由此产生生理效应。 
此型受体主要有表皮生长因子受体(EGFR),胰岛素受体(IR),血小板衍生生长因子受体(PDGFR)等。此型受体的主要功能与细胞生长及有丝分裂的调控有关。 
⑷转录调控型受体:此型受体分布于细胞浆或细胞核内,其配体通常具有亲脂性。结合配体的受体被活化后,进入细胞核作用于染色体,调控基因的开放或关闭。受体的分子结构有共同特征性结构域,即分为高度可变区…DNA结合区及绞链区…激素结合区。①高度可变区:不同激素的受体此区的一级结构变化较大,其功能主要是与调节基因转录表达有关。②DNA结合区及绞链区:此区的功能是与受体被活化后向细胞核内转移(核转位)并与特异的DNA顺序结合有关。③激素结合区:一般情况下,此区与一种称为热休克蛋白90(hsp90)的蛋白质结合在一起而使受体处于失活状态。 
四、受体与配体的结合特点: 
1.高度的亲和力:配体与其受体的结合具有高度亲和力,多数配体与受体的解离常数为10…11~10…9mol/L。 
2.高度的特异性:指一种激素或细胞因子只能选择性与相应的受体结合的性质。 
3.可逆性:配体与受体通常通过非共价键而结合。 
4.可饱和性:由于存在于细胞膜上或细胞内的受体数目是一定的,因此配体与受体的结合也是可以饱和的。 
5.结合量与效应成正比:配体的浓度越大,配体与受体的亲和力越大,受体的数目越多,则配体与受体的结合量越大,产生的生理效应也越大。 
五、细胞信息传递途径: 
1.cAMP…蛋白激酶A途径:通过这一途径传递信号的第一信使主要有儿茶酚胺类激素、胰高血糖素、腺垂体的激素、下丘脑激素等。其受体属于G蛋白偶联型膜受体,G蛋白有激活型的Gs和抑制型的Gi两种。腺苷酸环化酶(AC)存在于细胞膜上,可接受G蛋白的信号而被激活,催化ATP转化为cAMP,导致细胞内cAMP浓度升高,从而激活蛋白激酶A(PKA)。PKA是一种四聚体,两个亚基为催化亚基,两个亚基为调节亚基。当调节亚基与cAMP结合后发生变构(每一调节亚基可结合两分子cAMP),与催化亚基解聚,从而使催化亚基激活。PKA可促使多种酶或蛋白质丝氨酸或苏氨酸残基的磷酸化,改变酶的催化活性或蛋白质的生理功能。 
2.IP3,Ca2+…CaM激酶途径: 通过此途径传递信号的第一信使主要有:①激素:儿茶酚胺、血管紧张素Ⅱ等。②生长因子:PDGF、EGF等。③神经递质:乙酰胆碱、5…羟色胺等。其受体可为G蛋白偶联型,也可为酪氨酸蛋白激酶型。G蛋白为Gp型。通过Gp蛋白介导,存在于细胞膜上的PLCβ可被激活;而PLCγ则是在受体的酪氨酸蛋白激酶催化下,其酪氨酸残基被磷酸化修饰而激活。PLC激活后,可催化膜上的磷脂酰肌醇…4;5…双磷酸(PIP2)水解成为二脂酰甘油(DAG)及1;4;;5…三磷酸肌醇(IP3)。当IP3与存在于内质网膜上的IP3受体结合后,钙通道开放,贮存于内质网中的Ca2+释放进入胞液,引起胞液中Ca2+浓度升高。胞液中的钙调蛋白(CaM)与Ca2+结合发生变构,从而激活依赖Ca2+/CaM的蛋白激酶(CaM激酶),催化数十种酶或蛋白质的磷酸化修饰,产生相应的调节作用。 
3.DAG…蛋白激酶C途径: 此途径的第一信使与IP3,Ca2+…CaM激酶途径相似,也通过Gp型和另一种G蛋白介导信息,激活磷脂酶C(PLC)和磷脂酶D(PLD)。PLD是存在于细胞膜上的另一种磷脂酶,在Ca2+的存在下,可将磷脂酰胆碱水解成为磷脂酸(PA),PA可进一步在磷脂酸磷酸水解酶(PAP)的催化下水解生成DAG,是DAG的另一生成途径。胞液中DAG浓度升高,可致蛋白激酶C激活。该酶可催化底物蛋白质丝氨酸或苏氨酸残基的磷酸化。经典的蛋白激酶C需在Ca2+,DAG和磷脂酰丝氨酸的存在下才能被激活。 
4.Ras…MAPK途径: 已知胰岛素和大部分的生长因子经此途径传递信号。主要过程为:EGF + EGFR → SHC磷酸化 → 形成SHC…SOS…GRB2…Ras复合体 → Ras激活 → Raf…1激酶↑ → MEK1/2 ↑ → ERK1/2 ↑ → 细胞生长与调亡。 
5.胞内受体介导途径: 通过细胞内受体传递信号的第一信使有:①类固醇激素;②1;25…(OH)2D3;③甲状腺激素。当激素与受体结合后,引起hsp90与受体解离,受体被活化;活化受体核转移并与HRE结合;特异基因去阻遏且RNA聚合酶活性增高,特异基因表达及特异蛋白质合成,产生特定的生理效应
信号转导 细胞外信号通过与细胞表面的受体相互作用转变为胞内信号并在细胞内传递的过程称为信号转导(signal transduction)
跨膜信号转导过程包括:
1,胞外信号被质膜上的特异性受体蛋白识别,受体被活化;
2,通过胞内信号转导物(蛋白激酶,第二信使等) 的相互作用传递信号;
3,信号导致效应物蛋白的活化,引发细胞应答(如激活核内转录因子,调节基因表达)。
第一节胞内信使 细胞内信使(intracellular messenger)是具有信息传递作用的一些小分子,也称为第二信使(second messengers)。
一、cAMP{环磷酸腺苷),
生成: 腺苷酸环化酶催化ATP生成cAMP;
代谢: cAMP磷酸二酯酶水解cAMP产生5’…AMP
功能:①激活蛋白激酶A  ②抑制蛋白磷酸酯酶
二、cGMP(环磷酸鸟苷)
生成酶:鸟苷酸环化酶
代谢酶:cGMP磷酸二酯酶
功能:①激活蛋白激酶G ②调控细胞膜离子通道
三、三磷酸肌醇(inositol triphosphate;IP3)和甘油二酯(diacyglycerol; DAG)
G…蛋白偶联受体激活磷脂酶Cβ生成IP3及DAG
功能:1、IP3:开放胞内钙库,激活Ca2+途径.2、DAD:在Ca2+和磷脂酰丝氨酸存在下,激活蛋白激酶C,
四、钙离子  细胞内钙离子主要贮存于胞内钙库(如肌细胞的肌浆网,SR)和线粒体中。
细胞质膜两铡'Ca2+'跨膜梯度:细胞外液》》胞浆
胞浆内'Ca2+'的调节一通过(质膜和钙库膜上的)钙离子通道(进入)和钙泵(出),
钙通道开放的条件:
①质膜或钙库膜去极化(可兴奋细胞);
成②IP3介导钙库膜上钙通道开放(任何细胞).
钙泵激活.线粒体钙泵的作用.
Ca2+功能:与钙调蛋白(calmodulin; CaM)结合形成Ca2+CaM复合物:
①激活腺苷酸环化酶和磷酸二酯酶,②激活Ca2+CaM依赖蛋白激酶
钙通道阻断剂及其临床应用。
五、一氧化氮(NO)
NO合成酶催化L…精氨酸生成NO和胍氨酸
NO合成酶(NOS)分类:①神经元型(nNOS).②内皮细胞型(ecNOS)③诱导型(iNOS)
功能:激活乌苷酸环化酶,刺激cGMP合成。NO的生理病理作用
第二节 蛋白激酶和蛋白磷酸酯酶 
 蛋白激酶(Protein kinase,PK)催化蛋白质的含羟基氨基酸(丝/苏和酪)的侧链羟基形成磷酸酯(ATP的γ磷酸基转移至氧).蛋白质磷酸酯酶(Protein phosphatase,PPase)催化磷酸蛋白的磷酸酯键水解而去磷酸化。细胞内任何一种蛋白质的磷酸化状态是由蛋白激酶和蛋白磷酸酯酶的两种相反酶活性之间的平衡决定的。蛋白质可逆磷酸化的调节在信号转导过程中有重要作用,是细胞生命活动的调控中心。
一、信号转导过程中的蛋白激酶 
{一)丝氨酸/苏氨酸蛋白激酶(Ser/Thr PK)是一大类特异地催化蛋白质的丝氨酸和苏氨酸残基磷酸化的激酶家族,参与多种信号转导过程。
1、蛋白激酶A(PKA)…cAMP依赖性蛋白激酶。
PKA由两个催化亚基C和两个调节亚基R所构成
PKA参与cAMP介导的转录水平调控。
PKA的其它(下游)底物:①多种代谢相关酶②核内组蛋白和非组蛋白③膜蛋白等。
2、蛋白激酶C(PKC)…Ca2+激活的/磷脂依赖性蛋白激酶.
调节:可被Ca2+,DAG和磷脂酰丝氨酸激活.TPA(佛波酯)也可激活.
PKC分子由N…端的调节区和C—端催化区(亲水的蛋白激酶结构域)所组成。 
PKC有多种亚型(》12种).
PKC可激活:
①受体,如EGFR,胰岛素受体,细胞因子受体等。
②细胞骨架蛋白如Map,Tau.
②膜蛋白,如Na+…H+交换蛋白,Ca2+…ATP酶等.
④核蛋白/转录因子,起始因子等,
⑤信号转导物如鸟苷酸环化酶,Raf…1等.
3、Ca2+钙调蛋白依赖性蛋白激酶(Cam…PK)Cam…PKII是一种多功能的蛋白激酶.
4。cGMP依赖的蛋白激酶(PKG)功能:调节胞内钙离子.
5,DNA依赖的蛋白激酶(DNA…PK)
调节:结合游离DNA片段后被激活,
底物:核内DNA结合蛋白和转录因子,如SPl,Fos/Jun,Myc和P53,
作用:①参与DNA修复和重组;
②通过激活TF调节基因表达;
③参与细胞周期的关卡机制(Checkpoint)。
6.丝裂原激活的蛋白激酶(Mitogen…activated protein kinase, MAPK)
调节:MAPK激酶…MAPKK(MEK)。
下游底物:核内转录因子如Myc,Jun,Ets及其它胞内蛋白.
(二)酪氨酸蛋白激酶(Tyrosine pr
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架